A SOLUTION FOR THE MOIION OF A BODY
 WITH A FIXED POINT

(ODNO RESHENIE ZADACHI O DVIZHENII TELA, IMEIUSHCHEOO NEPODVIZHNUIU TOCHKU)

PMM Vol.28, N 1, 1904, pp.158-159

P.V. KHARLAMOV
(Novosibirsk)

(Recelved July 4, 1903)

1. If a given body 1 c :ub, ect to the gravitational force and carries rotating masses (flywheel or a liquid circulating within multiply-connected cavities) then ils motion is described by Equations [1]

$$
\begin{gather*}
A \frac{d p}{d t}=(B-C) q r+\lambda_{2} r-\lambda_{3} q+e_{2} \gamma_{3}-e_{3} \gamma_{2} \tag{1.1}\\
\frac{d \gamma_{1}}{d t}=r \gamma_{2}-q \gamma_{3}\left(\begin{array}{c}
123 \\
A M C \\
p q r
\end{array}\right) \tag{1.2}
\end{gather*}
$$

Here $\varepsilon_{1}, \varepsilon_{2}, e_{3}$ is the unit vector passing from the fixed point through the center of gravity of the system; $\gamma_{1}, \gamma_{2}, \gamma_{3}$ is the vector in the direction of the gravitational foree, the magnitude of which is equal to the product of the welght of the body and the distance connecting the center of gravity with the fixed point; $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are constants characterizing the ciclic motions; the remaining notation is as usual [1].

The integrals of Equations (1.1) and (1.2) are

$$
\begin{gather*}
A p^{2}+B q^{2}+C r^{2}-2\left(e_{1} \gamma_{1}+e_{2} \gamma_{2}+e_{3} \gamma_{3}\right)=2 E \tag{1.3}\\
\left(A p+\lambda_{1}\right) \gamma_{1}+\left(B q+\lambda_{2}\right) \gamma_{3}+\left(C r+\lambda_{3}\right) \gamma_{3}=k \tag{1.4}\\
\gamma_{1}^{2}+\gamma_{2}{ }^{2}+\gamma_{3}{ }^{2}=\Gamma^{2} \tag{1.5}
\end{gather*}
$$

The ma.s distuibution within the body and internal ciclic motions are characterized by nine parameters $A, B, C, \Gamma, \lambda_{1}, \lambda_{2}, \lambda_{3}$ and two ot the bneas quantitice $p_{1}, \epsilon_{z}, t_{3}$, connected by the relationship

$$
\begin{equation*}
e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=1 \tag{1.6}
\end{equation*}
$$

The general solution containing 15 independent parameters (here are included the six parameters characterizing the initial conditions) is unknown, and therefore the generality of each particular solution will be determined by the number of independent parameters retained in it. Zhukovskii [1] gave a solution of Equations (1.1) by constraining the system parameters by three cunditions, namely, he assumed the center of gravity colncident with the pulnt of support. His solution, consequently, has 12 independent parameters. With the three additional conditions $\lambda_{2}=\lambda_{2}-\lambda_{3}-0$, the Zhukovskil Bulution yields the Euler solution containing 9 parameters.

With the five conditions $B=0, \lambda_{2}=\lambda_{3}-0, e_{2}=e_{3}=0$ we obtain from
(..I) and (1.2) the Lagrange solution, containing 10 parametor..

Recently Sretenskii showed two more solution: [2] and [3]. The 1ir. Sretenskil solution generalizes the Goriachev-Chapiyein solutiun and "cntains 8 parameters, while the second generalizer an Hes: solution and er tains 11 parameters. The present study gives a oolut, ion of the probly cosidered which contains 10 independent parameters.
2. Let the center of gravity be in one of the princilal planes of the changed momental ellipsold $e_{2}=0$, then in view of (J)

$$
\begin{equation*}
e_{1}=\cos \alpha, \quad e_{3}=\sin \alpha \tag{2.1}
\end{equation*}
$$

Leaving the parameter λ_{z} arbitrary (subscript 2 is omitted in the following), we subject λ_{1} and λ_{3} to condition

$$
\begin{equation*}
(2 B-C) \lambda_{1} \sin \alpha=(2 B-A) \lambda_{3} \cos \alpha \tag{2.2}
\end{equation*}
$$

By means of a new parameter v this condition is represented in the form

$$
\begin{equation*}
\lambda_{1}=(2 B-A) v \cos \alpha, \quad \lambda_{3}=(2 B-C) v \sin \alpha \tag{2.3}
\end{equation*}
$$

We will seek a solution for which the two components of angular velocity are constant $p=p_{0}$ and $r=r_{0}$. At the same time the first and third equation of (1.1) establish the dependence of y_{2} on q if

$$
\begin{equation*}
p_{0}=v \cos \alpha, \quad r_{0}=v \sin \alpha \tag{2.4}
\end{equation*}
$$

and this dependence is

$$
\begin{equation*}
r_{2}=v(\lambda-D q) \tag{2.5}
\end{equation*}
$$

As a consequence of (2.1) to (2.5) the integrals (1.3) and (1.5) yicl.1

$$
\begin{gather*}
\gamma_{1}=\left(H+1 / 2 B q^{2}\right) \cos \alpha-\sqrt{\Gamma^{2}-\left(H+1 / 2 B q^{2}\right)^{2}-v^{2}(\lambda-B q)^{2}} \sin \alpha \tag{2.6}\\
\gamma_{3}=\left(H+1 / 2 B q^{2}\right) \sin \alpha+\sqrt{\Gamma^{2}-\left(H+1 / 2^{2} B q^{2}\right)^{2}-v^{2}(\lambda-B q)^{2}} \cos \alpha \\
H=1 / 2^{2}\left(A \cos ^{2} \alpha+C \sin ^{2} \alpha\right)-E
\end{gather*}
$$

By substituting Expression. (2.1), (2.3), (2.4) and (2.0) intu the incem.1 equation of (1.1), q is definded as an clliptic function of itm.

$$
\begin{equation*}
t=-B \int_{q_{0}}^{q} \frac{d q}{\sqrt{\Gamma^{2}-\left(H+1 / 2 B q^{2}\right)^{2}-v^{2}(\lambda-B q)^{2}}} \tag{2.7}
\end{equation*}
$$

The derived quantities satisfy Equations (1.2) and by rubutilutin, Lin m into (1.4) they determine the constant $i n=\nu\left(F H+\lambda^{2}\right)$.

The nutation and rotation angles are found from Formulas:

$$
\gamma_{1}=\Gamma \sin \theta \cos \varphi, \quad \gamma_{2}=\Gamma \cos \theta, \quad \gamma_{3}=\Gamma \sin \theta \sin \varphi
$$

For the angle of precession we have

$$
\frac{d \psi}{d t}=\Gamma \frac{p_{i 1}+r \gamma_{3}}{\gamma_{1}^{2}+\gamma_{3}^{2}}, \quad \psi=\psi_{0}+\Gamma \int_{0}^{t} \frac{H+1 / 2 B q^{2}(\tau)}{\Gamma^{2}-v^{2}[\lambda-B \eta(\tau)]^{2}} d \tau
$$

Thus, in the derived solution the independent parameters $A, P, C, \Gamma, x, x, v, H, a_{0}$, and $\psi_{\mathbf{0}}$ are retalned.

The partjoulur case of the derived solution for the condition $a=0$ is given int [4].

Two known solutions for the motion of a rigid body with a fixted poinu follow from the found solution in cases of $\lambda_{1}=0 \quad(i=1,2,3)$.

1. Let

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda_{3}=0 \quad \text { при } v \neq 0 \tag{2.8}
\end{equation*}
$$

We conclude from (2.3) that these conditions are fulfilled if

$$
\begin{equation*}
\alpha=0, \quad A=2 B \tag{2.9}
\end{equation*}
$$

Under conditions (2.8) and (2.9), we find from (2.4) to (2.7) that

$$
\begin{gathered}
p=v, \quad r=0, \quad \gamma_{1}=H+\frac{B}{2} q^{2}, \quad \gamma_{2}=-B v q \\
\gamma_{3}=\sqrt{\Gamma^{2}-v^{2} B^{2} q^{2}-\left(H+1 / 2 B q^{2}\right)^{2}}, \quad t=-B \int_{q_{0}}^{q} \frac{d q}{\sqrt{\Gamma^{2}-v^{2} B^{2} q^{2}-\left(H+1 / 2 B q^{2}\right)^{2}}}
\end{gathered}
$$

which coincidcs with the Bobylev [5] - Steklov [6] solution. The latter one contains seven independent parameters.

$$
\begin{array}{r}
\text { 2. Let } v=0, \text { then from }(2.3), \quad(2.4) \text { and }(2.5) \\
\qquad p=r=0, \quad \boldsymbol{\gamma}_{\mathbf{2}}=0, \quad \boldsymbol{\lambda}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{3}}=0 \tag{2.10}
\end{array}
$$

f.e. the axis of rotation is fixed and horizontal. From (2.8), (2.9) and (2.10) we have

$$
\theta=1 / 2 \pi, \quad \psi=\psi_{0}, \quad \gamma_{1}=\Gamma \cos \varphi, \quad \gamma_{3}=\Gamma \sin \varphi
$$

One of the Euler kinematic equations yields $q=d \varphi / d t$. Substituting these values into the second equation in (1.1), we obtain the case of the physical pendulum.

BIBLIOGRAPHY

1. Zhukovskii, N.E., O dvizhenii tverdogo tela, imeiushchego polosti, napolnennye odnoroanoi kapel noi zhiukost'iu (On the motion of a rigid body having cavities filled wilh a homogeneous liquid). Izv.mosk. Obshch.Isp.Prip., № 2, 1886, Collection of Works, ONTI, Vol.3, 1936.
2. Sretenskii, L.N., 0 nekotorykh sluchaiakh integriruemosti uravnenii uvizhenila girostata (On certain cases of integrability of the equations of motion for a gyrostat). Dokl. Akad. Nauk SSSR, Vol.149, № 2, 1963.
3. Sretenskii, L.N., O nekotorykh sluchaiakh dvizhenila tiazhelogo tverdogo tela s giroskopom (On certain cases of motion of a heavy rigiu body with a Eyroocopc). Vestn.mosk. Univ., № 3, 1963.
4. Kharlamov, P.V., Odin sluchai integriruemosti uravnenii dvizheniia tiazhelogo tverdogo tela, imeiushchego polosti, zapolnennye zhidkost'iu (A case of integrability of the equations of motion for a heavy rigid body having cavities filled with a liquid). Dokl.Akad.Nauk SSSR, Vol. 150 , № 4, 1963.
5. Bobylev, D.N., Ob odnom chastnom reshenii differentsial'nykh ulavnenii dvizheniia tiazhelogo tverdogo tela vokrug nepodvizhnoi tochki (On a particular solution of the differential equations of motion for a heavy rigid body moving about a fixed point). Trud.Otd.fiz.Nauk Obshch.Lub.Estestv., Vol.8, № $\dot{2}, 1896$.
6. Steklov, V.A., odin sluchal dvizhenila liazhelogo fverdugu tela, imeiushchego nepodvizhnuiu tochku (A case of motion of a heavy rigid body, having a fixed point). Trud.Otd.fiz.Nauk Obshch.Lub.Estestv., Vol.8, № 2,1896 .
